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Summary: It is presented an approach to decision theory based upon non-
probabilistic uncertainty. There is an axiomatization of the hybrid probabilistic-
possibilistic mixtures based on a pair of triangular conorm and triangular norm 
satisfying restricted distributivity law, and the corresponding non-additive S-
measure. This is characterized by the families of operations involved in gener-
alized mixtures, based upon a previous result on the characterization of the 
pair of continuous t-norm and t-conorm such that the former is restrictedly 
distributive over the latter. The obtained family of mixtures combines probabilis-
tic and idempotent (possibilistic) mixtures via a threshold. 
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Introduction 
 

The classical utility theory of John von Neumann and Oskar Morgenstern (1944) is 
based upon the notion of probabilistic mixtures. The more recently developed general 
theory of non-additive measures (see Dieter Denneberg 1994, Endre Pap 1995) pro-
vides a good mathematical base for modeling complex systems in economics through 
areas such as preference theory, utility theory, game theory, operational research and 
decision making theory, see Antoine Billot (1992). Early applications of non-additive 
measures in economics trace back to George Schackle and Lennox Sharman (1952), 
as he put forward an alternative concept to that of subjective probability, which he 
called potential surprise and what we today call necessity, as dual to possibility 
measure. In this same timeframe French mathematician Gustav Choquet (1953) in-
troduced the concept of capacity as non-additive measure and the corresponding in-
tegral, which turns out to be useful in models of the theory of potential. Ellberg para-
dox (1969) shows the limits of subjective, and therefore additive, probability as a 
system for modeling beliefs. Glenn Shafer (1976) introduced belief functions, which 
previously had been called attribute of opinion. Bernoulli and Lambert further 
worked with non-additive probabilities when they modeled the cognitive behaviour 
of agents. David Schmeidler (1982) has introduced capacities into the heart of meth-
odology of utility expectation. Following Schmeidler (1982) and Itzhak Gilboa 
(1987) introduced non-additive subjective probability. As special type of non-
additive measures, called pseudo-additive measures (called also decomposable 
measures by Siegfrid Weber 1984), have been investigated by Michio Sugeno and 
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Toshiaki Murofushi (1987), V. P. Maslov (1987) and Pap (1990, 1995, 2002). Didier 
Dubois et al. (1996) have recently proven that the notion of mixtures can be extended 
to pseudo-additive measures. R. Cox's well-known theorem (1946) (see Jeff B. Paris 
1994), which justifies the use of probability for treating uncertainty, has been dis-
cussed in many papers. Recently, the theory has come under criticism, and some re-
laxation on the conditions has been made, which thus implies that also some non-
additive measures can satisfy the required conditions, see Joseph Y. Halpern (1999). 
Relaxing the condition on strict monotonicity, to only monotonicity on the function 
which occurs in the conditioning requirement, leads then to the pair of t-norm S and 
t-norm T which satisfies (RD) and the corresponding S-measure satisfy also all other 
required conditions. We present here an answer to the following question: what else 
remains possible beyond idempotent (possibilistic) and probabilistic mixtures?  

The solution takes the advantage of a result obtained by Peter E. Klement, 
Radko Mesiar, and Pap (2000) (see for special case Carlo Bertoluzza 1993) on the 
relaxed distributivity of triangular norm over a triangular conorm (called restricted 
distributivity). This result has a drastic consequence on the notion of mixtures. Be-
yond possibilistic and probabilistic mixtures, only a form of hybridization is possible 
such that the mixture is possibilistic under a certain threshold, and probabilistic 
above. - See Dubois, Pap, and Henri Prade (2000, 2001). Of necessity to mention, the 
models in investigations are involved many aggregation functions (operators), see 
Michel Grabisch et al. (2009).  

Before we present the hybrid axiomatic framework for utility theory, we recall 
both existing sets of utility axioms: classical, probabilistic (Von Neumann and 
Morgenstern), on one side, and possibilistic framework of Dubois and Prade for util-
ity theory, on other. Comparing both axiomatization, we came to hybrid one, which 
generalize possibilistic and probabilistic mixtures. 

 
1. Probabilistic Representation of Utilities (Von Neumann and 
Morgenstern Axioms of Preference) 

 

Let X be a set of situations (consequences, outcomes). Let p be a simple probability 
measure on X, thus p=(p(x1),p(x2),…,p(xn)), where p(xi) are probabilities of outcome 
xiX occurring, i.e., p(xi)0 for all i=1,2,…,n, and    i

n
= 1 p(xi)=1. Define œ(X) as 

the set of simple probability measures on X. A particular lottery p is a point in œ(X). 
A compound lottery is an operation defined on œ(X) which combines two probability 
distributions p and p into a new one, denoted V(p,p;,), with ,0,1 and 
=1, and it is defined as: V(p,p;,) = pp. Notice that V(p,p;,)œ(X). 
Let É be a binary relation over œ(X), i.e., É  œ(X)œ(X). Hence, we can write 
(p,q)É, or pÉq to indicate that lottery q is “preferred to or equivalent to” lottery p.  

One of the possible axiom systems for the Von Neumann and Morgenstern 
type utility is given by 

NM1. œ(X) is equipped with a complete preordering structure É. 
NM2 (Continuity). For pÄqÄr  : qV(p,r;,1-). 
NM3 (Independence). pq  V(p,r;,1-)  V(q,r;,1-), rœ(X), 

0,1. 



423 Decision Making by Hybrid Probabilistic - Possibilistic Utility Theory 

PANOECONOMICUS, 2009, 4, pp. 421-433

NM4 (convexity). For pÄq  pÄV(p,q;,1-)Äq, ]0,1[. 
The theorem below shows that the preference ordering on set of states which 

satisfies the proposed axioms can always be represented by a utility function. 
Representation Theorem (Von Neumann and Morgenstern 1944). A pref-

erence ordering relation É on œ(X) satisfies axioms NM1, NM2, NM3 and NM4 if 
and only if, there is a real-valued function U: œ(X)  — such that  

a) U represents É, i.e. p,qœ(X), pÉq  U(p)U(q); 
b) U is affine, i.e. p,qœ(X),  
U(p+(1-)q) = U(p)+(1-)U(q), for any ]0,1[.  
Moreover, U is unique up to a linear transformation. 
 

2. Triangular Conorms and Pseudo-Additive Measures 
 

A triangular conorm S (t-conorm for short) is a binary operation on the unit interval 
[0,1] such that for all x,y, z  [0,1] the following four axioms are satisfied: 

(S1) Commutativity S(x,y) = S(y,x); 
(S2) Associativity S(x,S(y, z)) = S(S(x,y), z); 
(S3) Monotonicity S(x,y)    S(x, z) whenever y  z; 
(S4) Boundary Condition S(x,0) = x. 
If S is a t-conorm, then its dual t-norm T : [0,1]2  [0,1] is given by 

T(x,y) = 1 - S(1-x,1-y). 
Example 2.1 The following are the three basic t-norms together with their 

dual t-conorms 
(i) Minimum TM and maximum SM given by 

TM(x,y) = min(x,y),        SM(x,y) = max(x,y); 
(ii) Product TP and probabilistic sum SP given by 

TP(x,y) = x y,                  SP(x;y) = x+y-x y; 
(iii) Lukasiewicz t-norm TL and Lukasiewicz t-conorm SL given by 

TL(x,y) = max(x+y-1,0),  SL(x,y) = min(x+y,1). 
We shall use results on t-conorms and t-norms from books of Bertold 

Schweizer and Abe Sklar (1989) and Klement, Mesiar, and Pap (2000). 
The t-conorm S (respectively t-norm T) is called strict if it is continuous and 

strictly monotone on the open square ]0,1[2. The continuous t-conorm S (respectively 
t-norm T) is called nilpotent if each a]0,1[ is a nilpotent element of S (respectively 
of T), i.e., for every a]0,1[ there exists n  (the set of natural numbers) such that 
aS

(n) =1 (respectively aT
(n)=0), where aS

(n) is the n-th power of a given by S(a,...,a) 
(respectively T(a, ..., a)), i.e., repeating the value a n-times. 

The following representations hold. 
Theorem 2.2. A function S:[0,1]2  [0,1] is a continuous Archimedean trian-

gular conorm,i.e., for all x]0, 1[ we have S(x,x)>x, if and only if there exists a con-
tinuous, strictly increasing function s:[0,1]  [0, +\infty] with s(0)=0 such that for all 
x,y [0,1] 

S(x,y) = s-1(min(s(x) + s(y),s(1))). 
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The analogous theorem holds for continuous Archimedean triangular norms: 
Theorem 2.3. A function T:[0,1]2  [0,1] is a continuous Archimedean trian-

gular norm,i.e., for all x ]0, 1[ we have T(x,x)<x, if and only if there exists a con-
tinuous, strictly decreasing function 

t:[0,1]  [0, +\infty] with t(1)=0 such that for all x,y  [0,1] 
T(x,y) = t-1(min(t(x) + t(y),t(0))). 

The functions s and t from Theorems 2.2 and 2.3 are then called additive gen-
erators of S and T, respectively. 

The following relation for a pair of t-conorm S and a t-norm T will be impor-
tant for the extension of the utility theory. 

Definition 2.4. A t-norm T is restricted distributive over a t-conorm S if for all 
x,y, z  [0,1] we have 

(RD)      T(x,S(y, z)) = S(T(x,y),T(x, z)), 
whenever S(y, z) < 1. 

The following theorem is needed from the monograph of Klement, Mesiar, 
Pap (2000) which gives the complete characterization of the family of continuous 
pairs (S,T) which satisfy the condition (RD).  

Theorem 2.5. A continuous t-norm T is conditionally distributive over a con-
tinuous t-conorm S if and only if there exists a value a  [0,1], a strict t-norm T* and 
a nilpotent t-conorm S* such that the additive generator s* of S* satisfying s*(1) = 1 is 
also a multiplicative generator of T* such that T on the square [0,a]2 is an arbitrary 
continuous t-norm T1, on the square [a,1]2 is t-norm T*, and on the remaining part of 
the unit square it is equal to min, i.e., in the ordinal sum notations 

 

T = (< 0,a,T1 >;< a,1,T* >), 
 

and S on the square [0,a]2 is max, on the square [a,1]2 is t-conorm S*, and on the re-
maining part of the unit square it is equal to max, i.e., in the ordinal sum notations S 
= (< a,1,S* >). 

The representation of the pair (S,T) of continuous t-conorm and t-norm, re-
spectively, which satisfy the condition (RD), based on Theorem 2.5, we denote by 
(<SM, S*>,<T1,T*>)a. 

Example 2.6 
(i) The extreme case a = 0 reduces on the pair SL and TP. 
(ii) The other extreme case a = 1 reduces on the pair SM and an arbitrary con-

tinuous t-norm T1. 
(iii)  For 0<a<1 the pair S and T gives us the hybrid idempotent probabilistic 

case. 
 

We restrict ourselves to the situation (<SM, SL>,<T1,TP>)a, since this is the 
most important case and all other cases can be obtained by isomorphisms (see Kle-
ment, Mesiar, and Pap 2000). 

Let X be a fixed non-empty finite set. 
Definition 2.7. Let S be a t-conorm and let 2X be the family of all subsets of 

X. A mapping m: 2X  [0,1] is called an S-measure if m()=0, m(X)=1 and if for all 
A,B  2X with A  B =  we have 

m (A  B) =  S(m(A),m(B)). 
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Remark 2.8. 
(i) Each S-measure m: 2X  [0,1] is uniquely determined by the values 

m({x}) with x X. 
(ii) In the general case when X is an arbitrary non-empty set (also infinite) 

there is an additional condition on m in Definition 2.6, namely that it is 
continuous from below.  

Example 2.9. A set function m: 2X  [0,1] is SM-measure if and only if for all 
A,B 2X we have m (A  B) = SM(m(A),m(B)). Usually it is called idempotent (pos-
sibility) measure with the corresponding distribution by . Namely, for an arbitrary 
function :X  [0,1], the set function m: 2X  [0,1] defined by  

 

m(A)=sup{ (x)| x A} 
 

 is an SM-measure. We remark that only for X finite the notions of SM-measure and 
possibility measures coincide, see Pap (1995). 

We characterize which triangular norms can be used for extending the notion 
of independence to pseudo-additive measures in the sense of a prescribed triangular 
conorm. Since the term independence has a precise meaning in probability theory, we 
shall speak of separability in the framework of S-measures.  

 

 Definition 2.10. Two events A and B are said to be T-separable if 
m(A  B)= T(m(A), m(B)) 

for a triangular norm T. 
Under natural constraints, the only reasonable pseudo-additive measures ad-

mitting of an independence-like concept, are based on restricted distributive pairs (S, 
T) of conorms and t-conorms, and we have by Dubois, Pap, and Prade (2001): 

(i) probability measures ( and T = product); 
(ii) possibility measures ( and T is any t-norm); 
(iii)  suitably normalized hybrid set-functions m such that there is 

a]0,1[ which gives for A and B disjoint 
 

m(A  B)  =  

 
and for separability: 

 

m(A  B) =    

 
It is well-known, see Shafer (1996), that any probability distribution on a fi-

nite set X can be represented as a sequence of binary lotteries. A binary lottery is 4-
uple (A,,x,y), where A is a subset of X and   [0,1] such that P(A)=, and it 
represents the random event that yields x if A occurs and y otherwise. 
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 Now we generalize this result to S-measure. Suppose tha m is a S-measure on 
X={x1, x2, x3} and mi=m({xi}). Suppose we want to decompose the ternary tree into 
the binary tree of the right side so that they are equivalent. We follow the calcula-
tions given by Dubois, Pap, Prade (2000). Thus the reduction of lottery property en-
forces the following equations 

 

S(v1,v2)=1,    T(, v1)=m2,  T(,v2)=m3, 
 

where T is the triangular norm that expresses separability for S-measures. The first 
condition expresses that (v1,v2) is in the mixture set (with no truncation for t-conorm 
S allowed). If these equations have unique solutions, then by iterating this construc-
tion, any distribution of a S-measure can be decomposed into a sequence of binary 
lotteries.The problem of normalization takes us to the following system of 

 =T(, v1),      =T(, v2),      S(v1,v2) =1, 
for given  and . We know that there always exists an unique solution (,v1,v2). 
We are interested in the analytical forms of (,v1,v2). We suppose without loss of 
generality that  > . Then we have the following cases: 

Case I. Let  > a,  > a. Then (*) reduces on 
= a+ ( -a)(v1-a)\(1-a),  = a+ ( -a)(v2-a)\(1-a),  1= v1 + v2 -a. 
 

We obtain the unique solution 
 

= +  -a,          v1= a+ (1-a)(-a)\(+-2a),  
v2= a+ (1-a)(-a))\(+-2a). 
 

Case II. Assume  > a   . Then S=max, and   a, v1  a and v2   < a. 
Hence assuming T1= min (we shall only deal with this case) the equations (*) write: 

 

max (v1,v2) =1, = a+ ( -a)(1-a) \ (1-a) = , = min (, v2). 
 

Assume v1=1. Then  =  and v2 =. We remark that this solution is unique, 
since assuming v2=1 leads to =< a, which is a contradiction. 

Case III. Assume max(, )  a . Then S=max. Assume again v1=1. Then 
the first equation in (*) yields =v1. Assuming T=T1=min the second equation of (*) 
leads to v2=. Hence the same solution (,1,) as in case II. Note that assuming 
v2=1 again leads to a contradiction since then = and equation =T(, v1) has no 
solution. 

For max(1, )=1 the other two equations reduces on = min(,1), (or it can 
be considered the case with T1 (we shall not examine this case) where we can take 
specially T1= min) and so =min (, ). 

We have v1=1 and v2= . 
 

3. Possibilistic Representation of Utilities (Dubois and Prade 
Axioms of Preferences) 

 

The belief state about which situation in X is the actual one is supposed to be repre-
sented by a possibility distribution . A possibility distribution  defined on X takes 
its values on a valuation scale V, where V is supposed to be linearly ordered. V is 
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assumed to be bounded and we take sup(V)=1 and inf(V)=0. Define Pi(X) as set of 
consistent possibility distributions over X, i.e.,  

Pi(X)=:XV  xX: (x)=1. 
The possibilistic mixture is an operation defined on Pi(X) which combines two 

possibility distributions  and  into a new one, denoted P(,;,), with ,V 
and max(,)=1, and it is defined as:  

 

P(,;,) = max(min(,), min(,)). 
 

Let m be a binary relation over Pi(X), i.e., m  Pi(X)Pi(X). Hence, we can 
write (,)m, or m to indicate that possibilistic lottery  is “preferred to or 
equivalent to” lottery .  

The proposed axiom systems for the Dubois and Prade type optimistic utility 
is given by 

DP1 Pi(X) is equipped with a complete preordering structure m. 
DP2 (Continuity). For Pi(X), : P(   ,    ;,1), where    and     are a 

maximal and a minimal element of Pi(X) with respect to m, respectively. 
DP3 (Independence).   P(,;,)  P(,;,), Pi(X), ,. 
DP4 (Uncertainty prone).    m. 
 

The set of axioms DP1, DP2, DP3 and DP4 characterise the preference order-
ings induced by an optimistic utility. 

Representation Theorem (Dubois and Prade 1998). A preference ordering 
relation É on œ(X) satisfies axioms DP1, DP2, DP3 and DP4 if and only if, there 
exist:  

a) a linearly ordered utility scale U, with inf(U)=0 and sup(U)=1; 
b) a preference function u:XU such that u1(1)u1(0), and 
c) an onto order preserving function h:VU such that h(0)=0, h(1)=1, 

in such a way that it holds: m iff 0u, where 0u is the ordering on Pi(X) induced 
by the qualitative utility  

QU+() = maxxX min(h((x)),u(x)). 
 
 

4. Hybrid Probabilistic-Possibilistic Mixture 
       

Let (S,T) be a pair of continuous t-conorm and t-norm, respectively, which satisfy the 
condition (RD). Then by Theorem 2.4 they are of the form  (<SM, S*>,<T1,T*>)a, 
where S* is a nilpotent t-conorm,T1 an arbitrary t-norm and T* a strict t-norm. 

In order to generalize stated sets of axioms for utility theory, we denote 
X=x1,x2,…,xn set of outcomes, (X) set of S-measures defined on X.  

Definition 4.1. A hybrid mixture operation which combines two S-measures 
m and m into a new one, denoted M(m,m;,), with pair (,) belonging to 

S,a = (,) ,]0,1[, =1+a or min(,)a, max(,)=1, 
where a0,1, is defined by  

M(m,m;,) = S(T(,m), T(,m)). 
As we alredy told, without loosing the generality, we shall restrict to the case 

(<SM, SL>,<T1,TP>)a.  
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Remark 4.2. 
It is easy to verify that hybrid mixture M given by Definition 4.1 satisfies the 

axioms M1-M5 given by Dubois et al. (1996) on S,a. This kind of mixtures exhaust 
the possible solutions to M1-M5. 

Let (S,T) be a pair of continuous t-conorm and t-norm, respectively, of the 
form (<SM, SL>,<T1,TP>)a . Let u1,u2 be two utilities taking values in the unit interval 
[0,1] and let ,  be two degrees of plausibility from S,a . Then we define the op-
timistic hybrid utility function by means of the hybrid mixture as 

U(u1, u2; , )= S(T(u1, ),T(u2,)). 
 

We introduce the pessimistic hybrid utility function U using the utility function 
U in the following way 

U(u1, u2; , ) = 1- U(u1, u2; , ). 
  

5. Characterization of the Optimistic Hybrid Utility Function  
 

We shall examine in details the optimistic hybrid utility function utility function. 
 Case I. Let  > a, > a, i.e., + = 1+a. Then we have the following sub-

cases: 
(a) Let > a, u2 > a. 
Then we have 
 

U(u1, u2;,)= S(a+(u1-a)(-a)\(1-a),a+(u2-a)( - a))\(1-a)). 
 

Then a+(ui-a)( - a))\(1-a) > a for all i=1,2. Hence by the preceding equality  
 

U(u1, u2; , )= (u1(-a) + u2(1- ))\(1-a). 
 

(b) Let u1  a, u2 > a. 
 

Then we have 
U(u1, u2; ,) = S(u1, a+((u2-a)(-a))\(1-a)) 

= a+((u2-a)(-a))\(1-a). 
In a quite analogous way it follows for u1 > a, u2  a that 

U(u1, u2; , )= a+ ((u1-a)(-a))\(1-a). 
 
(c) Let Let u1  a, u2  a. Then 

U(u1, u2; , )= max (u1, u2). 
 

Case II. Let   a, = 1 (in a quite analogous way we can consider the 
case  a, =1). Then we have the following sub-cases, where S=max: 

 
(a) Let u1>a, u2 > a. Then we have 

U(u1, u2; , )= S(, u2)=u2. 
 
(b) Let u1  a, u2 > a. Then we have 

U(u1, u2; , )=S(aT1(u1\a,\a),u2) =u2. 
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(c) Let u1 > a, u2  a. Then we have 
U(u1, u2; , )= S(, u2) = max(, u2). 

 
(d) Let u1  a, u2  a. Then we have 

U(u1, u2; , ) = max(aT1(u1\a, \a),u2). 
 
For T1=min the case II and case Ic are exactly idempotent (possibilistic) util-

ity. 
 

6. Behaviour of the Decision Maker with respect to Hybrid  
Utility Function 

 

Although the above description of optimistic hybrid utility is rather complex, it can 
be easily explained, including the name optimistic. 

Case I is when the decision-maker is very uncertain about the state of nature: 
both  and  are high and the two involved states have high plausibility. Case Ia is 
when the reward is high in both states- then the behavior of utility is probabilistic. 
Case Ib is when the reward is low in state x1 (u1  a), but high on the other state. 
Then the decision-maker looks forward to the best outcome and the utility is a func-
tion of u2 and 2 only. In case Ic when both rewards are low, the decision-maker is 
possibilistic and again focuses on the best outcome. Case II is when state x1, is 
unlikely. In case IIa,b when the plausible reward is good, then the decision-maker 
looks forward to this reward. In case IIc where the most plausible reward is low then 
the decision maker still keeps some hope that state x1, will prevail if u2 is really bad, 
but weakens the utility of state x1, because of it lack of plausibility. This phenomena 
subsides when the least plausible outcome is also bad, but the (bad) utility of x1, par-
ticipates in the calculation of the resulting utility, by discounting , even further. 
From the analysis, the optimistic attitude of an agent ranking decisions using the hy-
brid utility is patent. 

In addition, we can provide the corresponding interpretations of the pessimis-
tic hybrid utility function U as dual interpretations to the preceding cases of U. In 
order to do this, we must go through the above behavior analysis again, interpreting 
u1 and u2 and U as disutilities instead of utilities. For instance, in case IIa,b, the deci-
sion-maker is afraid that the worst outcome occurs (u2>a is interpreted as penality). 

 
7. Axioms for a Hybrid Probabilistic-Possibilistic Utility Theory 

 

We propose the following set of axioms for a preference relation h defined over 
(X) to represent optimistic utility (see Pap and Marija Roca 2006): 

H1. (X) is equipped with a complete preordering structure h , i.e., h is re-
flexive, transitive and complete.  

H2 (Continuity). If m h m h m then 
(i) ]a,1[: m h M(m,m;1+a,), if m,m,ma; 
(ii) ]0,a: m h M(m,m;1,), otherwise. 
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H3 (Independence). For m,m,m(X) and for ,S,a: 
 

m h m  M(m,m;,) h M(m,m;,). 
 

H4 (Uncertainty prone).  
(i) m h m  m h M(m,m;,1+a) h m, ]a,1[,  if m,ma; 
(ii) m  m  m h m, otherwise. 
 
Now, we define a function of optimistic utility for all m(X) by 

  )(),()( iiXx xuxmTSmU
i

  , 

where u:XU is a preference function that assigns to each consequence of X a pref-
erence level of U, such that u1(1)u1(0). It is interesting to notice that U+ pre-
serves the hybrid mixture in the sense that: 

         . ,);m(U),m(UM)m(U,T,)m(U,TS,;m,mMU  

 
In the proof of the next representation theorem the following lemma is crucial. 
Lemma. Let Éu be the preference ordering on (X) induced by utility function  

  )(),()( iiXx xuxmTSmU
i

  , 

i.e., mÉum if and only if U+(m)U+(m). Then the binary relation Éu verifies set of 
axioms H1,H2,H3,H4. 

 
Representation Theorem (Optimistic Utility). 
Let (X) be a set of S-measures defined on X, and h a binary preference rela-

tion on (X). Then the relation h satisfies the set of axioms H1,H2,H3,H4 if and 
only if there exist: 

a) a linearly ordered utility scale U, with inf(U)=0 and sup(U)=1; 
b) a preference function u:X0,1, 
in such a way that mhm if and only if mÉum, where Éu is the ordering in 

(X) induced by the optimistic utility function defined as: 
U+(m) = SxiX(T(m(xi), u(xi)), 

where (S,T) is a pair of continuous t-conorm and t-norm, respectively, which satisfy 
the condition (RD).  

We will introduce, on the analogous way, the pessimistic criterion in the hy-
brid utility theory, but first, we have to modify the existing set of axioms. Namely, 
the axioms H2. and H4. have to be adapted to pessimistic preference criterion. 

 
H2* (Continuity). If m h m h m then: 
(i) ]a,1[: m h M(m,m;1+a,), if m,m,ma; 
(ii) ]0,a: m h M(m,m;,1), otherwise. 
 
H4* (Uncertainty Aversion).  
(i) m h m  m h M(m,m;,1+a) h m, ]a,1[,  if m,ma; 
(ii) m  m  m h m, otherwise. 
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Thus, the modified set of axioms, i.e. the set H1,H2*,H3,H4* faithfully 
characterise the preference ordering induced by a pessimistic hybrid utility, which is 
dual to the optimistic one.  

 
Representation Theorem (Pessimistic Utility). 
Let (X) be a set of S-measures defined on X, and h a binary preference rela-

tion on (X). Then the relation h satisfies the set of axioms H1,H2*,H3,H4* if 
and only if there exist 

a) a linearly ordered utility scale U, with inf(U)=0 and sup(U)=1; 
b) a preference function u:X0,1, 

in such a way that mhm if and only if mÉum, where Éu is the ordering in (X) in-
duced by the pessimistic utility function given by 

U(m) = 1SxiX(T(m(xi), 1u(xi)), 
where (S,T) is a pair of continuous t-conorm and t-norm, respectively, which satisfy 
the condition (RD).  

 
8. Conclusions 

 

A generalization is given of the Von Neumann and Morgenstern utility theory, which 
was based on the probability theory, now using special type of non-additive measures 
the so called pseudo-additive measures. An axiomatization of the hybrid probabilis-
tic-possibilistic mixtures based upon a pair of triangular conorm and triangular norm 
satisfying restricted distributivity law, and the corresponding non-additive S-measure 
is presented. Conclusions illustrate that this is a maximal natural generalization in the 
sense that any further generalization would loose some natural requirement. Fur-
thermore, an interpretation of the corresponding behavior of the decision maker is 
provided. The future work will be related to further interpretations in applications in 
economics. 
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